
Threads and Animation
Lists, Collections, and Iterators

Check out ThreadsIntro project from SVN



On the grading sheet, it says that the 
Required Features are worth 30 points
◦ I scaled it to 50 because I had said that the 

Required Features would be worth at least 75%
If I missed something that your program does 
correctly, please talk with me about it





Often we want our program to do multiple 
(semi) independent tasks at the same time
Each thread of execution can be assigned to a 
different processor, or one processor can 
simulate simultaneous execution through "time 
slices" (each typically a large fraction of a 
millisecond)

Time 
Slices 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

running 
thread 1
running 
thread 2

Q1-2



There is always one default thread; you can 
create others
Uses for additional threads:
◦ Animation that runs while still allowing user 

interaction
◦ A server (such as a web server) communicates with 

multiple clients
◦ Animate multiple objects (such as the timers in the 

soon-to-be-seen CounterThreads example)
A thread may suspend execution for (approx-
imately) a specified amount of time by calling   

Thread.sleep(numberOfMilliseconds);

Q3-4



How to create and run a new thread
1. Define a new class that implements the Runnable interface:  

(it has one method:  public void run(); )
2. Place the code for the threaded task in the run method:

class MyRunnable implements Runnable {
public void run () {

// task statements go here
}

}
3. Create an object of this class:

Runnable r = new MyRunnable();
4. Construct a Thread object from this Runnable object:

Thread t = new Thread(r);
5. Call the start method to start the thread:

t.start();

Q5



Greetings –simple threads, different wait times
AnimatedBall – move balls, stop with click
CounterThreads – multiple independent counters
CounterThreadsRadioButtons – same as above, 
but with radio buttons

The remaining two are more advanced than we will 
use in this course, dealing with race conditions 
and synchronization.  Detailed descriptions are 
in Big Java Chapter 20
◦ BankAccount
◦ SelectionSorter



Thu Jan 03 16:09:36 EST 2008 Hello, World!
Thu Jan 03 16:09:36 EST 2008 Goodbye, World!
Thu Jan 03 16:09:36 EST 2008 Hello, World!
Thu Jan 03 16:09:36 EST 2008 Goodbye, World!
Thu Jan 03 16:09:36 EST 2008 Goodbye, World!
Thu Jan 03 16:09:36 EST 2008 Hello, World!
Thu Jan 03 16:09:37 EST 2008 Goodbye, World!
Thu Jan 03 16:09:37 EST 2008 Hello, World!
Thu Jan 03 16:09:38 EST 2008 Hello, World!
Thu Jan 03 16:09:38 EST 2008 Goodbye, World!
Thu Jan 03 16:09:38 EST 2008 Goodbye, World!
Thu Jan 03 16:09:38 EST 2008 Hello, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:39 EST 2008 Hello, World!
Thu Jan 03 16:09:39 EST 2008 Hello, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:40 EST 2008 Hello, World!
Thu Jan 03 16:09:40 EST 2008 Goodbye, World!
. . . 

One thread prints 
the Hello
messages; the 
other Thread prints 
the  Goodbye 
messages.

Each thread sleeps 
for a random 
amount of time 
after printing each 
line.

This example was adapted from Cay 
Horstmann's Big Java 3ed, Chapter 20



public class GreetingThreadTester{

public static void main(String[] args){

// Create the two Runnable objects
GreetingRunnable r1 = new GreetingRunnable("Hello, World!");
GreetingRunnable r2 = new GreetingRunnable("Goodbye, World!");

// Create the threads from the Runnable objects
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);

// Start the threads running.
t1.start();
t2.start();

}
}

We do not call run()
directly. 
Instead we call start(), 
which sets up the thread 
environment and then 
calls run() for us.



import java.util.Date;

public class GreetingRunnable implements Runnable {

private String greeting;
private static final int REPETITIONS = 15;
private static final int DELAY = 1000;

public GreetingRunnable(String aGreeting) {
greeting = aGreeting;

}

public void run() {
try {

for (int i = 1; i <= REPETITIONS; i++){
Date now = new Date();
System.out.println(now + " " + greeting);
Thread.sleep((int)(DELAY*Math.random()));         

}
} catch (InterruptedException exception){
}

}
}

If a thread is interrupted while it is sleeping, 
an InterruptedException is thrown. Q6



A simplified version of the way BallWorlds 
does animation
When balls are created, they are given 
position, velocity, and color
Our run() method tells each of the balls to 
move, then redraws them
Clicking the mouse turns movement off/on
Demonstrate the program



public class AnimatedBallViewer {  

static final int FRAME_WIDTH = 600;
static final int FRAME_HEIGHT = 500;

public static void main(String[] args){
JFrame frame = new JFrame();

frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
frame.setTitle("BallAnimation");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

AnimatedBallComponent component = new AnimatedBallComponent();
frame.add(component);

frame.setVisible(true);         
new Thread(component).start();   

}
}

This class has all of  
the usual stuff, plus 
this last line of code 
that starts the 
animation.



class Ball {
private double centerX, centerY, velX, velY;
private Ellipse2D.Double ellipse;
private Color color;
private static final double radius = 15;

public Ball(double cx, double cy, double vx, double vy, Color c){
this.centerX = cx;      
this.centerY = cy;
this.velX = vx;        
this.velY = vy;
this.color = c;
this.ellipse = new Ellipse2D.Double (

this.centerX-radius, this.centerY-radius, 
2*radius, 2*radius);

}

public void fill (Graphics2D g2) {
g2.setColor(this.color);
g2.fill(ellipse);

} 

public void move (){
this.ellipse.x += this.velX;
this.ellipse.y += this.velY;

}   
}

Everything here should 
look familiar, similar to 
code that you wrote for 
BallWorlds.



public class AnimatedBallComponent extends JComponent 
implements Runnable, MouseListener {

private ArrayList<Ball> balls = new ArrayList<Ball>();
private boolean moving = true;
public static final long DELAY = 30;
public static final int ITERATIONS = 300;

public AnimatedBallComponent() {
super();
balls.add(new Ball(40, 50, 8, 5, Color.BLUE));
balls.add(new Ball(500, 400, -3, -6, Color.RED));
balls.add(new Ball(30, 300, 4, -3, Color.GREEN));
this.addMouseListener(this);

}

Again, there 
should be no 
surprises here!



public void run() {
for (int i=0; i<ITERATIONS; i++) {

if (moving){
for (Ball b:balls)

b.move();
this.repaint();

}
try {

Thread.sleep(DELAY);
} catch (InterruptedException e) {}

}
}

public void paintComponent(Graphics g){
Graphics2D g2 = (Graphics2D)g;
for (Ball b:balls)

b.fill(g2);
}

public void mousePressed (MouseEvent arg0) {
moving = !moving;

}

Each time through 
the loop (if moving), 
tell each ball to 
move, then repaint

Sleep for a while

Draw each ball

Toggle "moving" 
when the mouse 
is pressed

Q7



With regular buttons

With radio buttons
How many 
threads 
does this 
application 
appear to 
have?



public class CounterThreads {

public static void main (String []args) {
JFrame win = new JFrame();
Container c = win.getContentPane(); 
win.setSize(600, 250);
c.setLayout(new GridLayout(2, 2, 10, 0));
c.add(new CounterPane(200));
c.add(new CounterPane(500));
c.add(new CounterPane(50)); // this one will count fast!
c.add(new CounterPane(1000));

win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
win.setVisible(true);  

}
}

Same old stuff!



class CounterPane extends JComponent implements Runnable {

private int delay;    // sleep time before changing counter
private int direction = 0; //  current increment of counter
private JLabel display = new JLabel("0");

// Constants to define counting directions:
private static final int COUNT_UP =   1; // Declaring these 
private static final int COUNT_DOWN = -1; // constants avoids
private static final int COUNT_STILL =  0; // "magic numbers"

private static final int BORDER_WIDTH =  3;  
private static final int FONT_SIZE = 60;



public CounterPane(int delay) {

JButton upButton   = new JButton("Up");     // Note that these do
JButton downButton = new JButton("Down");   // NOT have to be fields
JButton stopButton = new JButton("Stop");   // of this class.

this.delay = delay; // milliseconds to sleep

this.setLayout(new GridLayout(2, 1, 5, 5)); 
// top row for display, bottom for buttons.

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(1, 3, 8, 1));
display.setHorizontalAlignment(SwingConstants.CENTER);
display.setFont(new Font(null, Font.BOLD, FONT_SIZE));

// make the number display big!  

this.add(display);
this.add(buttonPanel);
this.setBorder(BorderFactory.createLineBorder(Color.blue, 

BORDER_WIDTH));
// Any Swing component can have a border.
this.addButton(buttonPanel, upButton,   Color.orange, COUNT_UP);
this.addButton(buttonPanel, downButton, Color.cyan,   COUNT_DOWN);
this.addButton(buttonPanel, stopButton, Color.pink,   COUNT_STILL);

Thread t = new Thread(this);
t.start();

Put a simple border around the 
panel.  There are also more complex 
border styles that you can use.

A lot of the repetitive work is done 
by the calls to addButton(). 



The action listener added here is an anonymous 
inner class that implements ActionListener.
Because it is an inner class, its method can 
access this CounterPane's dir instance variable.

// Adds a control button to the panel, and creates an
// ActionListener that sets the count direction.
private void addButton(Container container, 

JButton button, 
Color color, 
final int dir) {

container.add(button);
button.setBackground(color);
button.addActionListener(new ActionListener () { 

public void actionPerformed(ActionEvent e) { 
direction = dir; 

}
});

}

Note that each button gets its own ActionListener 
class, created at runtime.  This is Swing's 
"preferred way"  of providing ActionListeners.

The value of dir will be 1, 
-1, or 0, to indicate counting 
up, down, or neither.

JPanel is a subclass 
of Container



This method is short and simple, because 
direction is always the amount to be added to 
the counter (1, -1, or 0). 

public void run() {
try {
do {
Thread.sleep(delay);
display.setText(Integer.parseInt(display.getText()) 

+ direction + "");
} while (true);

} catch (InterruptedException e) { }
}

}



Look through the code, discussing it with your 
partner and/or lab assistants until you think you 
understand it all.  Answer the following questions:

1. How does a CounterPane know whether to count 
up or down or stay the same?

2. When a counter is not changing, does its thread 
use less CPU time than one that is changing?

3. Would it be easy to add code to the main method 
that creates a SuperStop button, so that clicking 
this button stops all counters?  Explain.

Q8-10



public CounterPaneRadio(int delay) {

JRadioButton upButton = new JRadioButton("Up");
JRadioButton downButton = new JRadioButton("Down");
JRadioButton stopButton = new JRadioButton("Stop");

ButtonGroup group = new ButtonGroup();
group.add(upButton);
group.add(downButton);
group.add(stopButton);
stopButton.setSelected(true);

. . . 
And we remove the Color parameter from addButton()



A thread t ends when its run method 
terminates.
Threads used to have a stop method, but it is 
now deprecated.
Instead of stopping a thread, you notify it 
that it should stop itself (return from its run
method) by calling t.interrupt();
The thread can check to see if it has been 
interrupted by calling this.isInterrupted();
If so, the thread can decide to clean up and 
stop itself (or not).
How does it stop itself?

Q11





A list is an ordered collection where elements 
may be added anywhere, and any elements 
may be deleted or replaced.
Array List: Like an array, but growable and 
shrinkable.
Linked List:

Running time for add, remove, find?

Q12



LinkedList<String> list = new LinkedList<String> ();
list.add("abc");
list.add("xyz");
list.add(1, "ddd");
list.add(2, "jkl");
System.out.println(list);
list.remove("ddd");
System.out.println(list);
list.remove(2);
System.out.println(list);

Output:
[abc, ddd, jkl, xyz]
[abc, jkl, xyz]
[abc, jkl]



From the Source:
http://java.sun.com/docs/books/tutorial/coll
ections/index.html
That page and the three pages that you get 
by clicking Next three times are a very good 
introduction.
Collections Framework provides several 
interfaces and classes to facilitate handling 
collections of objects.
Closely related: java.util.Map interface.

http://java.sun.com/docs/books/tutorial/collections/index.html
http://java.sun.com/docs/books/tutorial/collections/index.html


Collection

SetList AbstractCollection

AbstractList AbstractSet

AbstractSequentialList
ArrayList

Vector

Stack

SortedSet

LinkedList HashSet TreeSet
Interface
Abstract Class
Concrete Class

Extends
Implements

This is the Java 1.2 picture.  Java 1.5 added  Queue, 
PriorityQueue, and a few other interfaces and classes.

All of these 
are in the 
java.util
package

Q13







A List is an ordered collection, items accessible by 
position.  Here, ordered does not mean sorted.
interface java.util.List<E>
User may insert a new item at a specific position.
Some important List methods:





Stores items (non-contiguously) in nodes; each 
contains a reference to the next node.
Lookup by index is linear time (worst, average).
Insertion or removal is constant time once we have 
found the location. 
◦ show how to insert A4 after A1.
If Comparable list items are kept in sorted order, 
finding an item still takes linear time.

Q14



class ListNode{
Object element; // contents of this node
ListNode next; // link to next node

ListNode (Object element, 
ListNode next) {

this.element = element;
this.next = next;

}

ListNode (Object element) {
this(element, null);

}
ListNode () {
this(null);

}
} 

How to implement 
LinkedList?

fields
Constructors
Methods

Note that the fields of this class have 
"package" access, so that other 
classes in the same package can 
access them directly.  ListNode
objects are used like C structs.



class LinkedList implements List {
ListNode first;
ListNode last;

Constructors: (a) default (b)  single element.
methods:
public boolean add(Object x)
Appends the specified element to the end of this list (returns true)
public int size() Returns the number of elements in this list.
public void add(int i, Object x) adds o at index i.
throws IndexOutOfBoundsException

public boolean contains(Object x)
Returns true if this list contains the specified element. (2 versions).

public boolean remove(Object x)
Removes the first occurrence (in this list) of the specified element.

public Iterator iterator()Can we also write listIterator( ) ?
Returns an iterator over the elements in this list in proper sequence.

Attempt these in the 
order shown here.



More specifically, what is a java.util.Iterator?
◦ It's an interface:
◦ interface java.util.Iterator<E>
◦ with the following methods:

An extension, ListIterator, adds:



At the board with your team.
Try to do the simple add, then size, then the 
more complex add.




	CSSE 220 Day 28
	Vector Graphics Grading
	Questions
	Multithreaded programs
	A Java Program's Threads
	The Emperor's New Threads
	Threads examples (in your SVN repos.)
	Simple example (1)  – greetings Output
	Simple example(2) – GreetingThreadTester
	Simple example(3)  - a Runnable class
	Ball Animation
	Set up the frame
	The Ball class
	AnimatedBallComponent:�Instance Variables and Constructor
	AnimatedBallComponent:�run, paintComponent, mousePressed
	Another animation: CounterThreads
	CounterThreads setup
	CounterPane Basics
	CounterPane Constructor
	CounterPane's addButton method
	CounterPane's run method
	CounterThreads questions
	RadioButton version
	Ending a thread
	Lists, Collections, Iterators
	List
	List Usage Example
	Java Collections Framework
	Some Collection interfaces and classes 
	Collections classes and interfaces�(classes at top, interfaces at bottom)
	Some Methods From the Collection Interface
	Additional List Interface methods �(List extends Collection)
	Break
	LinkedList implementation of the List Interface
	Consider Part of a LinkedList implementation:
	Let's do parts of a LinkedList implementation
	What's an iterator?
	Work on Linked Lists
	Markov work time

